13-搭建积木:Python 模块化
你好,我是悦创。
这是基础版块的最后一节。到目前为止,你已经掌握了 Python 这一门当代武功的基本招式和套路,走出了新手村,看到了更远的世界,有了和这个世界过过招的冲动。
于是,你可能开始尝试写一些不那么简单的系统性工程,或者代码量较大的应用程序。这时候,简单的一个 py 文件已经过于臃肿,无法承担一个重量级软件开发的重任。
今天这节课的主要目的,就是化繁为简,将功能模块化、文件化,从而可以像搭积木一样,将不同的功能,组件在大型工程中搭建起来。
1. 简单模块化
说到最简单的模块化方式,你可以把函数、类、常量拆分到不同的文件,把它们放在同一个文件夹,然后使用 from your_file import function_name, class_name
的方式调用。之后,这些函数和类就可以在文件内直接使用了。
# utils.py
def get_sum(a, b):
return a + b
# class_utils.py
class Encoder(object):
def encode(self, s):
return s[::-1]
class Decoder(object):
def decode(self, s):
return ''.join(reversed(list(s)))
# main.py
from utils import get_sum
from class_utils import *
print(get_sum(1, 2))
encoder = Encoder()
decoder = Decoder()
print(encoder.encode('abcde'))
print(decoder.decode('edcba'))
########## 输出 ##########
3
edcba
abcde
我们来看这种方式的代码:get_sum()
函数定义在 utils.py
,Encoder 和 Decoder 类则在 class_utils.py
,我们在 main 函数直接调用 from import
,就可以将我们需要的东西 import 过来。
非常简单。
但是这就足够了吗?当然不,慢慢地,你会发现,所有文件都堆在一个文件夹下也并不是办法。
于是,我们试着建一些子文件夹:
# utils/utils.py
def get_sum(a, b):
return a + b
# utils/class_utils.py
class Encoder(object):
def encode(self, s):
return s[::-1]
class Decoder(object):
def decode(self, s):
return ''.join(reversed(list(s)))
# src/sub_main.py
import sys
sys.path.append("..")
from utils.class_utils import *
encoder = Encoder()
decoder = Decoder()
print(encoder.encode('abcde'))
print(decoder.decode('edcba'))
########## 输出 ##########
edcba
abcde
而这一次,我们的文件结构是下面这样的:
.
├── utils
│ ├── utils.py
│ └── class_utils.py
├── src
│ └── sub_main.py
└── main.py
很容易看出,main.py
调用子目录的模块时,只需要使用 .
代替 /
来表示子目录,utils.utils
表示 utils 子文件夹下的 utils.py
模块就行。
那如果我们想调用上层目录呢?注意,sys.path.append("..")
表示将当前程序所在位置向上提了一级,之后就能调用 utils 的模块了。
同时要注意一点,import 同一个模块只会被执行一次,这样就可以防止重复导入模块出现问题。当然,良好的编程习惯应该杜绝代码多次导入的情况。在 Facebook 的编程规范中,除了一些极其特殊的情况,import 必须位于程序的最前端。
最后我想再提一下版本区别。你可能在许多教程中看到过这样的要求:我们还需要在模块所在的文件夹新建一个 __init__.py
,内容可以为空,也可以用来表述包对外暴露的模块接口。不过,事实上,这是 Python 2 的规范。在 Python 3 规范中,__init__.py
并不是必须的,很多教程里没提过这一点,或者没讲明白,我希望你还是能注意到这个地方。
整体而言,这就是最简单的模块调用方式了。在我初用 Python 时,这种方式已经足够我完成大学期间的项目了,毕竟,很多学校项目的文件数只有个位数,每个文件代码也只有几百行,这种组织方式能帮我顺利完成任务。
但是在我去和 Facebook 的朋友对话后,我发现,一个项目组的 workspace 可能有上千个文件,有几十万到几百万行代码。这种调用方式已经完全不够用了,学会新的组织方式迫在眉睫。
接下来,我们就系统学习下,模块化的科学组织方式。
2. 项目模块化
我们先来回顾下相对路径和绝对路径的概念。
在 Linux 系统中,每个文件都有一个绝对路径,以 /
开头,来表示从根目录到叶子节点的路径,例如 /home/ubuntu/Desktop/my_project/test.py
,这种表示方法叫作绝对路径。
另外,对于任意两个文件,我们都有一条通路可以从一个文件走到另一个文件,例如 /home/ubuntu/Downloads/example.json
。再如,我们从 test.py
访问到 example.json
,需要写成 '../../Downloads/example.json'
,其中 ..
表示上一层目录。这种表示方法,叫作相对路径。
通常,一个 Python 文件在运行的时候,都会有一个运行时位置,最开始时即为这个文件所在的文件夹。当然,这个运行路径以后可以被改变。运行 sys.path.append("..")
,则可以改变当前 Python 解释器的位置。不过,一般而言我并不推荐,固定一个确定路径对大型工程来说是非常必要的。
理清楚这些概念后,我们就很容易搞懂,项目中如何设置模块的路径。
首先,你会发现,相对位置是一种很不好的选择。因为代码可能会迁移,相对位置会使得重构既不雅观,也易出错。因此,在大型工程中尽可能使用绝对位置是第一要义。对于一个独立的项目,所有的模块的追寻方式,最好从项目的根目录开始追溯,这叫做相对的绝对路径。
事实上,在 Facebook 和 Google,整个公司都只有一个代码仓库,全公司的代码都放在这个库里。我当时刚了解到时,对此感到很困惑,也很新奇,难免会有些担心:
- 这样做似乎会增大项目管理的复杂度吧?
- 是不是也会有不同组代码隐私泄露的风险呢?
后来,随着工作的深入,我才发现了这种代码仓库独有的几个优点。
第一个优点,简化依赖管理。整个公司的代码模块,都可以被你写的任何程序所调用,而你写的库和模块也会被其他人调用。调用的方式,都是从代码的根目录开始索引,也就是前面提到过的相对的绝对路径。这样极大地提高了代码的分享共用能力,你不需要重复造轮子,只需要在写之前,去搜一下有没有已经实现好的包或者框架就可以了。
第二个优点,版本统一。不存在使用了一个新模块,却导致一系列函数崩溃的情况;并且所有的升级都需要通过单元测试才可以继续。
第三个优点,代码追溯。你可以很容易追溯,一个 API 是从哪里被调用的,它的历史版本是怎样迭代开发,产生变化的。
如果你有兴趣,可以参考这篇论文:https://cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-lines-of-code-in-a-single-repository/fulltext
在做项目的时候,虽然你不可能把全世界的代码都放到一个文件夹下,但是类似模块化的思想还是要有的——那就是以项目的根目录作为最基本的目录,所有的模块调用,都要通过根目录一层层向下索引的方式来 import。
明白了这一点后,这次我们使用 PyCharm 来创建一个项目。这个项目结构如下所示:
.
├── proto
│ ├── mat.py
├── utils
│ └── mat_mul.py
└── src
└── main.py
# proto/mat.py
class Matrix(object):
def __init__(self, data):
self.data = data
self.n = len(data)
self.m = len(data[0])
# utils/mat_mul.py
from proto.mat import Matrix
def mat_mul(matrix_1: Matrix, matrix_2: Matrix):
assert matrix_1.m == matrix_2.n
n, m, s = matrix_1.n, matrix_1.m, matrix_2.m
result = [[0 for _ in range(n)] for _ in range(s)]
for i in range(n):
for j in range(s):
for k in range(m):
result[i][k] += matrix_1.data[i][j] * matrix_2.data[j][k]
return Matrix(result)
# src/main.py
from proto.mat import Matrix
from utils.mat_mul import mat_mul
a = Matrix([[1, 2], [3, 4]])
b = Matrix([[5, 6], [7, 8]])
print(mat_mul(a, b).data)
########## 输出 ##########
[[19, 22], [43, 50]]
这个例子和前面的例子长得很像,但请注意 utils/mat_mul.py
,你会发现,它 import Matrix
的方式是 from proto.mat
。这种做法,直接从项目根目录中导入,并依次向下导入模块 mat.py
中的 Matrix
,而不是使用 ..
导入上一级文件夹。
是不是很简单呢?对于接下来的所有项目,你都能直接使用 Pycharm 来构建。把不同模块放在不同子文件夹里,跨模块调用则是从顶层直接索引,一步到位,非常方便。
我猜,这时你的好奇心来了。你尝试使用命令行进入 src 文件夹,直接输入 Python main.py
,报错,找不到 proto。你不甘心,退回到上一级目录,输入Python src/main.py
,继续报错,找不到 proto。
Pycharm 用了什么黑魔法呢?
实际上,Python 解释器在遇到 import 的时候,它会在一个特定的列表中寻找模块。这个特定的列表,可以用下面的方式拿到:
import sys
print(sys.path)
########## 输出 ##########
['', '/usr/lib/python36.zip', '/usr/lib/python3.6', '/usr/lib/python3.6/lib-dynload', '/usr/local/lib/python3.6/dist-packages', '/usr/lib/python3/dist-packages']
请注意,它的第一项为空。其实,Pycharm 做的一件事,就是将第一项设置为项目根目录的绝对地址。这样,每次你无论怎么运行 main.py
,import 函数在执行的时候,都会去项目根目录中找相应的包。
你说,你想修改下,使得普通的 Python 运行环境也能做到?这里有两种方法可以做到:
import sys
sys.path[0] = '/home/ubuntu/workspace/your_projects'
第一种方法,“大力出奇迹”,我们可以强行修改这个位置,这样,你的 import 接下来肯定就畅通无阻了。但这显然不是最佳解决方案,把绝对路径写到代码里,是我非常不推荐的方式(你可以写到配置文件中,但找配置文件也需要路径寻找,于是就会进入无解的死循环)。
第二种方法,是修改 PYTHONHOME。这里我稍微提一下 Python 的 Virtual Environment(虚拟运行环境)。Python 可以通过 Virtualenv 工具,非常方便地创建一个全新的 Python 运行环境。
事实上,我们提倡,对于每一个项目来说,最好要有一个独立的运行环境来保持包和模块的纯净性。更深的内容超出了今天的范围,你可以自己查资料了解。
回到第二种修改方法上。在一个 Virtual Environment 里,你能找到一个文件叫 activate,在这个文件的末尾,填上下面的内容:
export PYTHONPATH="/home/ubuntu/workspace/your_projects"
这样,每次你通过 activate 激活这个运行时环境的时候,它就会自动将项目的根目录添加到搜索路径中去。
3. 神奇的 if __name__ == '__main__'
最后一部分,我们再来讲讲 if __name__ == '__main__'
,这个我们经常看到的写法。
Python 是脚本语言,和 C++、Java 最大的不同在于,不需要显式提供 main()
函数入口。如果你有 C++、Java 等语言经验,应该对 main() {}
这样的结构很熟悉吧?
不过,既然 Python 可以直接写代码,if __name__ == '__main__'
这样的写法,除了能让 Python 代码更好看(更像 C++ )外,还有什么好处吗?
项目结构如下:
.
├── utils.py
├── utils_with_main.py
├── main.py
└── main_2.py
# utils.py
def get_sum(a, b):
return a + b
print('testing')
print('{} + {} = {}'.format(1, 2, get_sum(1, 2)))
# utils_with_main.py
def get_sum(a, b):
return a + b
if __name__ == '__main__':
print('testing')
print('{} + {} = {}'.format(1, 2, get_sum(1, 2)))
# main.py
from utils import get_sum
print('get_sum: ', get_sum(1, 2))
########## 输出 ##########
testing
1 + 2 = 3
get_sum: 3
# main_2.py
from utils_with_main import get_sum
print('get_sum: ', get_sum(1, 2))
########## 输出 ##########
get_sum_2: 3
看到这个项目结构,你就很清晰了吧。
import 在导入文件的时候,会自动把所有暴露在外面的代码全都执行一遍。因此,如果你要把一个东西封装成模块,又想让它可以执行的话,你必须将要执行的代码放在 if __name__ == '__main__'
下面。
为什么呢?其实,__name__
作为 Python 的魔术内置参数,本质上是模块对象的一个属性。我们使用 import 语句时,__name__
就会被赋值为该模块的名字,自然就不等于 __main__
了。更深的原理我就不做过多介绍了,你只需要明白这个知识点即可。
4. 总结
今天这节课,我为你讲述了如何使用 Python 来构建模块化和大型工程。这里需要强调几点:
- 通过绝对路径和相对路径,我们可以 import 模块;
- 在大型工程中模块化非常重要,模块的索引要通过绝对路径来做,而绝对路径从程序的根目录开始;
- 记着巧用
if __name__ == '__main__'
来避开 import 时执行。
5. 思考题
最后,我想为你留一道思考题。from module_name import *
和 import module_name
有什么区别呢?欢迎留言和我分享,也欢迎你把这篇文章分享给你的同事、朋友。
思考题答案: 很多回复说的很对,from module_name import *
会把 module 中所有的函数和类全拿过来,如果和其他函数名类名有冲突就会出问题;import model_name
也会导入所有函数和类,但是调用的时候必须使用 model_name.func
的方法来调用,等于增加了一层 layer,有效避免冲突。
欢迎关注我公众号:AI悦创,有更多更好玩的等你发现!
公众号:AI悦创【二维码】
AI悦创·编程一对一
AI悦创·推出辅导班啦,包括「Python 语言辅导班、C++ 辅导班、java 辅导班、算法/数据结构辅导班、少儿编程、pygame 游戏开发」,全部都是一对一教学:一对一辅导 + 一对一答疑 + 布置作业 + 项目实践等。当然,还有线下线上摄影课程、Photoshop、Premiere 一对一教学、QQ、微信在线,随时响应!微信:Jiabcdefh
C++ 信息奥赛题解,长期更新!长期招收一对一中小学信息奥赛集训,莆田、厦门地区有机会线下上门,其他地区线上。微信:Jiabcdefh
方法一:QQ
方法二:微信:Jiabcdefh
- 0
- 0
- 0
- 0
- 0
- 0