04|字典、集合,你真的了解吗?

AI悦创原创
  • Python 进阶
  • Python 进阶
大约 5 分钟

img

你好,我是悦创。

前面的课程,我们学习了 Python 中的列表和元组,了解了他们的基本操作和性能比较。这节课,我们再来学习两个同样很常见并且很有用的数据结构:字典(dict)和集合(set)。字典和集合在 Python 被广泛使用,并且性能进行了高度优化,其重要性不言而喻。

字典和集合基础

那究竟什么是字典,什么是集合呢?字典是一系列由键(key)和值(value)配对组成的元素的集合,在 Python3.7+,字典被确定为有序(注意:在 3.6 中,字典有序是一个 implementation detail,在 3.7 才正式成为语言特性,因此 3.6 中无法 100% 确保其有序性),而 3.6 之前是无序的,其长度大小可变,元素可以任意地删减和改变。

相比于列表和元组,字典的性能更优,特别是对于查找、添加和删除操作,字典都能在常数时间复杂度内完成。

而集合和字典基本相同,唯一的区别,就是集合没有键和值的配对,是一系列无序的、唯一的元素组合。

首先我们来看字典和集合的创建,通常有下面这几种方式:

d1 = {'name': 'jason', 'age': 20, 'gender': 'male'}
d2 = dict({'name': 'jason', 'age': 20, 'gender': 'male'})
d3 = dict([('name', 'jason'), ('age', 20), ('gender', 'male')])
d4 = dict(name='jason', age=20, gender='male') 
d1 == d2 == d3 ==d4
True

s1 = {1, 2, 3}
s2 = set([1, 2, 3])
s1 == s2
True

这里注意,Python 中字典和集合,无论是键还是值,都可以是混合类型。比如下面这个例子,我创建了一个元素为1,'hello'5.0的集合:

s = {1, 'hello', 5.0}

再来看元素访问的问题。字典访问可以直接索引键,如果不存在,就会抛出异常:

d = {'name': 'jason', 'age': 20}
d['name']
'jason'
d['location']
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
KeyError: 'location'

也可以使用 get(key, default) 函数来进行索引。如果键不存在,调用 get() 函数可以返回一个默认值。比如下面这个示例,返回了 'null'

d = {'name': 'jason', 'age': 20}
d.get('name')
'jason'
d.get('location', 'null')
'null'

说完了字典的访问,我们再来看集合。

首先我要强调的是,集合并不支持索引操作,因为集合本质上是一个哈希表,和列表不一样。 所以,下面这样的操作是错误的,Python 会抛出异常:

s = {1, 2, 3}
s[0]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: 'set' object does not support indexing

想要判断一个元素在不在字典或集合内,我们可以用 value in dict/set 来判断。

s = {1, 2, 3}
1 in s
True
10 in s
False

d = {'name': 'jason', 'age': 20}
'name' in d
True
'location' in d
False

当然,除了创建和访问,字典和集合也同样支持增加、删除、更新等操作。

d = {'name': 'jason', 'age': 20}
d['gender'] = 'male' # 增加元素对'gender': 'male'
d['dob'] = '1999-02-01' # 增加元素对'dob': '1999-02-01'
d
{'name': 'jason', 'age': 20, 'gender': 'male', 'dob': '1999-02-01'}
d['dob'] = '1998-01-01' # 更新键'dob'对应的值 
d.pop('dob') # 删除键为'dob'的元素对
'1998-01-01'
d
{'name': 'jason', 'age': 20, 'gender': 'male'}

s = {1, 2, 3}
s.add(4) # 增加元素4到集合
s
{1, 2, 3, 4}
s.remove(4) # 从集合中删除元素4
s
{1, 2, 3}

不过要注意,集合的 pop() 操作是删除集合中最后一个元素,可是集合本身是无序的,你无法知道会删除哪个元素,因此这个操作得谨慎使用。

实际应用中,很多情况下,我们需要对字典或集合进行排序,比如,取出值最大的 50 对。

对于字典,我们通常会根据键或值,进行升序或降序排序:

d = {'b': 1, 'a': 2, 'c': 10}
d_sorted_by_key = sorted(d.items(), key=lambda x: x[0]) # 根据字典键的升序排序
d_sorted_by_value = sorted(d.items(), key=lambda x: x[1]) # 根据字典值的升序排序
d_sorted_by_key
[('a', 2), ('b', 1), ('c', 10)]
d_sorted_by_value
[('b', 1), ('a', 2), ('c', 10)]

这里返回了一个列表。列表中的每个元素,是由原字典的键和值组成的元组。

而对于集合,其排序和前面讲过的列表、元组很类似,直接调用 sorted(set) 即可,结果会返回一个排好序的列表。

s = {3, 4, 2, 1}
sorted(s) # 对集合的元素进行升序排序
[1, 2, 3, 4]

字典和集合性能

文章开头我就说到了,字典和集合是进行过性能高度优化的数据结构,特别是对于查找、添加和删除操作。那接下来,我们就来看看,它们在具体场景下的性能表现,以及与列表等其他数据结构的对比。

比如电商企业的后台,存储了每件产品的 ID、名称和价格。现在的需求是,给定某件商品的 ID,我们要找出其价格。

如果我们用列表来存储这些数据结构,并进行查找,相应的代码如下:

def find_product_price(products, product_id):
    for id, price in products:
        if id == product_id:
            return price
    return None 
     
products = [
    (143121312, 100), 
    (432314553, 30),
    (32421912367, 150) 
]

print('The price of product 432314553 is {}'.format(find_product_price(products, 432314553)))

# 输出
The price of product 432314553 is 30

欢迎关注我公众号:AI悦创,有更多更好玩的等你发现!

公众号:AI悦创【二维码】

AI悦创·编程一对一

AI悦创·推出辅导班啦,包括「Python 语言辅导班、C++ 辅导班、java 辅导班、算法/数据结构辅导班、少儿编程、pygame 游戏开发」,全部都是一对一教学:一对一辅导 + 一对一答疑 + 布置作业 + 项目实践等。当然,还有线下线上摄影课程、Photoshop、Premiere 一对一教学、QQ、微信在线,随时响应!微信:Jiabcdefh

C++ 信息奥赛题解,长期更新!长期招收一对一中小学信息奥赛集训,莆田、厦门地区有机会线下上门,其他地区线上。微信:Jiabcdefh

方法一:QQopen in new window

方法二:微信:Jiabcdefh

上次编辑于:
贡献者: AndersonHJB

你认为这篇文章怎么样?

  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
评论
  • 按正序
  • 按倒序
  • 按热度