{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "e91239ad", "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 2, "id": "5803418b", "metadata": {}, "outputs": [], "source": [ "# rowdata = {\n", "# \"电影名称\": ['功夫熊猫', '叶问3', '伦敦陷落', '代理情人', '新步步惊心', '谍影重重', '功夫熊猫', '美人鱼', '宝贝当家', '唐人街探案'],\n", "# \"搞笑镜头\": [39,3,2,9,8,5,39,21,45,23],\n", "# \"拥抱镜头\": [0,2,3,38,34,2,0,17,2,3],\n", "# \"打斗镜头\": [31,65,55,2,17,57,31,5,9,17],\n", "# \"电影类型\": [\"喜剧片\", \"动作片\", \"动作片\", \"爱情片\", \"爱情片\", \"动作片\", \"喜剧片\", \"喜剧片\", \"喜剧片\"]\n", "# }\n", "rowdata = {\n", " \"电影名称\": ['功夫熊猫', '叶问3', '伦敦陷落', '代理情人', '新步步惊心', '谍影重重', '功夫熊猫', '美人鱼', '宝贝当家'],\n", " \"搞笑镜头\": [39,3,2,9,8,5,39,21,45],\n", " \"拥抱镜头\": [0,2,3,38,34,2,0,17,2],\n", " \"打斗镜头\": [31,65,55,2,17,57,31,5,9],\n", " \"电影类型\": [\"喜剧片\", \"动作片\", \"动作片\", \"爱情片\", \"爱情片\", \"动作片\", \"喜剧片\", \"喜剧片\", \"喜剧片\"]\n", "}" ] }, { "cell_type": "code", "execution_count": 3, "id": "e1d2a6c4", "metadata": {}, "outputs": [], "source": [ "movie_data = pd.DataFrame(rowdata)\n", "# print(movie_data)" ] }, { "cell_type": "code", "execution_count": 53, "id": "7e0058cc", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
电影名称搞笑镜头拥抱镜头打斗镜头电影类型
0功夫熊猫39031喜剧片
1叶问33265动作片
2伦敦陷落2355动作片
3代理情人9382爱情片
4新步步惊心83417爱情片
5谍影重重5257动作片
6功夫熊猫39031喜剧片
7美人鱼21175喜剧片
8宝贝当家4529喜剧片
\n", "
" ], "text/plain": [ " 电影名称 搞笑镜头 拥抱镜头 打斗镜头 电影类型\n", "0 功夫熊猫 39 0 31 喜剧片\n", "1 叶问3 3 2 65 动作片\n", "2 伦敦陷落 2 3 55 动作片\n", "3 代理情人 9 38 2 爱情片\n", "4 新步步惊心 8 34 17 爱情片\n", "5 谍影重重 5 2 57 动作片\n", "6 功夫熊猫 39 0 31 喜剧片\n", "7 美人鱼 21 17 5 喜剧片\n", "8 宝贝当家 45 2 9 喜剧片" ] }, "execution_count": 53, "metadata": {}, "output_type": "execute_result" } ], "source": [ "movie_data" ] }, { "cell_type": "code", "execution_count": 54, "id": "0b06ed25", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 21.470911\n", "1 52.009614\n", "2 43.416587\n", "3 40.570926\n", "4 34.438351\n", "5 43.874822\n", "6 21.470911\n", "7 18.547237\n", "8 23.430749\n", "dtype: float64" ] }, "execution_count": 54, "metadata": {}, "output_type": "execute_result" } ], "source": [ "new_data = [23, 3, 17]\n", "data = ((movie_data.iloc[:9, 1:4] - new_data) ** 2).sum(1) ** 0.5\n", "data\n", "# dist = " ] }, { "cell_type": "code", "execution_count": 55, "id": "59e75138", "metadata": {}, "outputs": [], "source": [ "# movie_data.iloc[:9, 4]\n", "k = 5\n", "data_l = pd.DataFrame({\n", " \"data\": data,\n", " \"labels\": (movie_data.iloc[:9, 4]),\n", "})" ] }, { "cell_type": "code", "execution_count": 56, "id": "0092d0e3", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datalabels
021.470911喜剧片
152.009614动作片
243.416587动作片
340.570926爱情片
434.438351爱情片
543.874822动作片
621.470911喜剧片
718.547237喜剧片
823.430749喜剧片
\n", "
" ], "text/plain": [ " data labels\n", "0 21.470911 喜剧片\n", "1 52.009614 动作片\n", "2 43.416587 动作片\n", "3 40.570926 爱情片\n", "4 34.438351 爱情片\n", "5 43.874822 动作片\n", "6 21.470911 喜剧片\n", "7 18.547237 喜剧片\n", "8 23.430749 喜剧片" ] }, "execution_count": 56, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data_l" ] }, { "cell_type": "code", "execution_count": 57, "id": "e448a633", "metadata": {}, "outputs": [], "source": [ "sort_data = data_l.sort_values(by=\"data\")" ] }, { "cell_type": "code", "execution_count": 58, "id": "59fc7986", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datalabels
718.547237喜剧片
021.470911喜剧片
621.470911喜剧片
823.430749喜剧片
434.438351爱情片
340.570926爱情片
243.416587动作片
543.874822动作片
152.009614动作片
\n", "
" ], "text/plain": [ " data labels\n", "7 18.547237 喜剧片\n", "0 21.470911 喜剧片\n", "6 21.470911 喜剧片\n", "8 23.430749 喜剧片\n", "4 34.438351 爱情片\n", "3 40.570926 爱情片\n", "2 43.416587 动作片\n", "5 43.874822 动作片\n", "1 52.009614 动作片" ] }, "execution_count": 58, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sort_data" ] }, { "cell_type": "code", "execution_count": 59, "id": "c424e45d", "metadata": {}, "outputs": [], "source": [ "select_k = sort_data[:k]" ] }, { "cell_type": "code", "execution_count": 60, "id": "b1b4d542", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datalabels
718.547237喜剧片
021.470911喜剧片
621.470911喜剧片
823.430749喜剧片
434.438351爱情片
\n", "
" ], "text/plain": [ " data labels\n", "7 18.547237 喜剧片\n", "0 21.470911 喜剧片\n", "6 21.470911 喜剧片\n", "8 23.430749 喜剧片\n", "4 34.438351 爱情片" ] }, "execution_count": 60, "metadata": {}, "output_type": "execute_result" } ], "source": [ "select_k" ] }, { "cell_type": "code", "execution_count": 61, "id": "aa754a73", "metadata": {}, "outputs": [], "source": [ "frequency1 = select_k.loc[:, \"labels\"]" ] }, { "cell_type": "code", "execution_count": 62, "id": "0a4855f3", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "7 喜剧片\n", "0 喜剧片\n", "6 喜剧片\n", "8 喜剧片\n", "4 爱情片\n", "Name: labels, dtype: object" ] }, "execution_count": 62, "metadata": {}, "output_type": "execute_result" } ], "source": [ "frequency1" ] }, { "cell_type": "code", "execution_count": 63, "id": "d2a8eda4", "metadata": {}, "outputs": [], "source": [ "result = frequency1.value_counts()" ] }, { "cell_type": "code", "execution_count": 64, "id": "905e2b9e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "喜剧片 4\n", "爱情片 1\n", "Name: labels, dtype: int64" ] }, "execution_count": 64, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result" ] }, { "cell_type": "code", "execution_count": 66, "id": "75b0b58c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'喜剧片'" ] }, "execution_count": 66, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result.index[0]" ] }, { "cell_type": "code", "execution_count": null, "id": "0d463a29", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.13" } }, "nbformat": 4, "nbformat_minor": 5 }