
Grouping objects - Part II

Programming Practice and Applications

6.0

Michael Kölling

Indefinite iteration - the while loop

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 3

Main concepts to be covered

• The difference between definite and
indefinite (unbounded) iteration.

• Loops: the while loop

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 4

Search tasks are indefinite

• Consider: searching for your keys.
• You cannot predict, in advance, how many

places you will have to look.
• Although, there may well be an absolute limit –

i.e., checking every possible location.
• You will stop when you find them.
• ‘Infinite loops’ are also possible.

– Through error or the nature of the task.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 5

The while loop

• A for-each loop repeats the loop body for
every object in a collection.

– Sometimes we require more flexibility than this.
– The while loop supports flexibility.

• We use a boolean condition to decide whether
or not to keep iterating.

• This is a very flexible approach.
• Not tied to collections.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 6

While loop pseudo code

while(loop condition) {
 loop body
}

while we wish to continue, do the things in the loop body

boolean test
while keyword

Action(s) to be repeated

Pseudo-code expression of the actions of
a while loop

General form of a while loop

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 7

Looking for your keys
while(the keys are missing) {
 look in the next place;
}

Or:

while(not (the keys have been found)) {
 look in the next place;
}

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 8

Looking for your keys

boolean searching = true;
while(searching) {
 if(they are in the next place) {
 searching = false;
 }
}

Suppose we don’t find them?

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 9

For-each loop equivalent
/**
 * List all file names in the organizer.
 */
public void listAllFiles()
{
 int index = 0;
 while(index < files.size()) {
 String filename = files.get(index);
 System.out.println(filename);
 index++;
 }
} Increment index by 1

while the value of index is less than the size of the collection,
get and print the next file name, and then increment index

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 10

Elements of the loop

• We have declared an index variable.
• The condition must be expressed correctly.
• We have to fetch each element.
• The index variable must be incremented

explicitly.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 11

for-each versus while

• for-each:
– easier to write.
– safer: it is guaranteed to stop.
• while:

– we don’t have to process the whole collection.
– doesn’t even have to be used with a collection.
– take care: could create an infinite loop.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 12

Searching

• A fundamental activity.
• Applicable beyond collections.
• Necessarily indefinite.
• We must code for both success and failure –

nowhere else to look.
• Both must make the loop’s condition false, in

order to stop the iteration.
• A collection might be empty to start with.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 13

Finishing a search

• How do we finish a search?
• Either there are no more items to check:
index >= files.size()

• Or the item has been found:
found == true
found
! searching

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 14

Continuing a search

• We need to state the condition for continuing:
• So the loop’s condition will be the opposite of

that for finishing:
index < files.size() && ! found
index < files.size() && searching

• NB: ‘or’ becomes ‘and’ when inverting
everything.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 15

Searching a collection
int index = 0;
boolean searching = true;
while(index < files.size() && searching) {
 String file = files.get(index);
 if(file.equals(searchString)) {
 // We don't need to keep looking.
 searching = false;
 }
 else {
 index++;
 }
}
// Either we found it at index,
// or we searched the whole collection.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 16

Searching a collection
int index = 0;
boolean found = false;
while(index < files.size() && !found) {
 String file = files.get(index);
 if(file.equals(searchString)) {
 // We don't need to keep looking.
 found = true;
 }
 else {
 index++;
 }
}
// Either we found it at index,
// or we searched the whole collection.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 17

Indefinite iteration

• Does the search still work if the collection is
empty?

• Yes! The loop’s body won’t be entered in that
case.

• Important feature of while:
– The body can be executed zero or more times.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 18

Side note: The String class

• The String class is defined in the
java.lang package.

• It has some special features that need a little
care.

• In particular, comparison of String objects
can be tricky.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 19

Side note: The problem

• The compiler merges identical String literals
in the program code.

– The result is reference equality for apparently
distinct String objects.

• But this cannot be done for identical String
objects that arise outside the program’s code;

– e.g., from user input.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 20

Side note: String equality
if(input == "bye") {
 ...
}

if(input.equals("bye")) {
 ...
}

Important: Always use .equals for testing String
equality!

tests identity

tests equality

Do not use!!

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 21

Identity vs equality 1
Other (non-String) objects:

person1 == person2 ?

“Fred”

:Person

person1 person2

“Jill”

:Person

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 22

Identity vs equality 2
Other (non-String) objects:

person1 == person2 ?

“Fred”

:Person

person1 person2

“Fred”

:Person

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 23

Identity vs equality 3
Other (non-String) objects:

person1 == person2 ?

“Fred”

:Person

person1 person2

“Fred”

:Person

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 24

Identity vs equality (Strings)

"bye"

:String

input

"bye"

:String

String input = reader.getInput();
if(input == "bye") {
 ...
}

== ?

false!

== tests identity

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 25

Identity vs equality (Strings)

"bye"

:String

input

"bye"

:String

String input = reader.getInput();
if(input.equals("bye")) {
 ...
}

equals ?

true!

equals tests
equality

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 26

Moving away from String

• Our collection of String objects for music
tracks is limited.

• No separate identification of artist, title, etc.
• A Track class with separate fields:
– artist
– title
– filename

Grouping objects

Iterator objects

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 28

Iterator and iterator()

• Collections have an iterator() method.
• This returns an Iterator object.
• Iterator<E> has methods:
• boolean hasNext()
• E next()
• void remove()

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 29

Using an Iterator object

Iterator<ElementType> it = myCollection.iterator();
while(it.hasNext()) {
 call it.next() to get the next object
 do something with that object
}

java.util.Iterator returns an Iterator object

public void listAllFiles()
{
 Iterator<Track> it = files.iterator();
 while(it.hasNext()) {
 Track tk = it.next();
 System.out.println(tk.getDetails());
 }
}

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 30

Iterator mechanics

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 31

:Element

myList:List

:Element :Element

:Iterator

myList.iterator()

:Element

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 32

:Element :Element :Element

:Iterator

hasNext()? ✔
next()

Element e = iterator.next();

:Element

:Iterator

myList:List

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 33

:Element :Element :Element

hasNext()? ✔
next()

:Element

:Iterator :Iterator

myList:List

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 34

:Element :Element :Element

hasNext()? ✔
next()

:Element

:Iterator :Iterator

myList:List

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 35

:Element :Element :Element

hasNext()? ✔
next()

:Element

:Iterator :Iterator

myList:List

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 36

:Element :Element :Element

hasNext()? ✗

:Element

:Iterator

myList:List

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 37

Index versus Iterator

• Ways to iterate over a collection:
– for-each loop.

• Use if we want to process every element.
– while loop.

• Use if we might want to stop part way through.
• Use for repetition that doesn't involve a collection.

– Iterator object.
• Use if we might want to stop part way through.
• Often used with collections where indexed access is not very efficient, or

impossible.
• Use to remove from a collection.

• Iteration is an important programming pattern.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 38

Removing from a collection
Iterator<Track> it = tracks.iterator();
while(it.hasNext()) {
 Track t = it.next();
 String artist = t.getArtist();
 if(artist.equals(artistToRemove)) {
 it.remove();
 }
}

Using the Iterator’s remove method.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 39

Removing from a collection – wrong!

int index = 0;
while(index < tracks.size()) {
 Track t = tracks.get(index);
 String artist = t.getArtist();
 if(artist.equals(artistToRemove)) {
 tracks.remove(index);
 }
 index++;
}

Can you spot what is wrong?

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 40

Review

• Loop statements allow a block of statements to be
repeated.

• The for-each loop allows iteration over a whole
collection.

• The while loop allows the repetition to be controlled
by a boolean expression.

• All collection classes provide special Iterator
objects that provide sequential access to a whole
collection.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 41

The auction project

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 42

The auction project

• The auction project provides further
illustration of collections and iteration.

• Examples of using null.
• Anonymous objects.
• Chaining method calls.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 43

null

• Used with object types.
• Used to indicate, 'no object'.
• We can test if an object variable holds the
null value:

if(highestBid == null) …

• Used to indicate ‘no bid yet’.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 44

Anonymous objects

• Objects are often created and handed on
elsewhere immediately:

Lot furtherLot = new Lot(…);
lots.add(furtherLot);

• We don’t really need furtherLot:

lots.add(new Lot(…));

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 45

Chaining method calls

• Methods often return objects.
• We often immediately call a method on the

returned object.
Bid bid = lot.getHighestBid();
Person bidder = bid.getBidder();

• We can use the anonymous object concept and
chain method calls:
lot.getHighestBid().getBidder()

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 46

Chaining method calls

• Each method in the chain is called on the
object returned from the previous method call
in the chain.

String name =
 lot.getHighestBid().getBidder().getName();

Returns a Bid object from the Lot

Returns a Person object from the Bid

Returns a String object from the Person

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 47

Review

• Collections are used widely in many different
applications.

• The Java library provides many different
‘ready made’ collection classes.

• Collections are often manipulated using
iterative control structures.

• The while loop is the most important control
structure to master.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 48

Review

• Some collections lend themselves to index-
based access; e.g. ArrayList.

• Iterator provides a versatile means to
iterate over different types of collection.

• Removal using an Iterator is less error-
prone in some circumstance.

