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Main concepts to be covered

• The difference between definite and 
indefinite (unbounded) iteration. 

• Loops: the while loop
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Search tasks are indefinite

• Consider: searching for your keys. 
• You cannot predict, in advance, how many 

places you will have to look. 
• Although, there may well be an absolute limit – 

i.e., checking every possible location. 
• You will stop when you find them. 
• ‘Infinite loops’ are also possible. 

– Through error or the nature of the task.
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The while loop

• A for-each loop repeats the loop body for 
every object in a collection. 

– Sometimes we require more flexibility than this. 
– The while loop supports flexibility. 

• We use a boolean condition to decide whether 
or not to keep iterating. 

• This is a very flexible approach. 
• Not tied to collections.
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While loop pseudo code

while(loop condition) { 
    loop body 
} 

while we wish to continue, do the things in the loop body

boolean test
while keyword

Action(s) to be repeated

Pseudo-code expression of the actions of 
a while loop

General form of a while loop
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Looking for your keys
while(the keys are missing) { 
    look in the next place; 
} 

Or: 

while(not (the keys have been found)) { 
    look in the next place; 
}
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Looking for your keys

boolean searching = true; 
while(searching) { 
    if(they are in the next place) { 
        searching = false; 
    } 
}

Suppose we don’t find them?
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For-each loop equivalent
/** 
 * List all file names in the organizer. 
 */ 
public void listAllFiles() 
{ 
    int index = 0; 
    while(index < files.size()) { 
        String filename = files.get(index); 
        System.out.println(filename); 
        index++; 
    } 
} Increment index by 1

while the value of index is less than the size of the collection, 
get and print the next file name, and then increment index
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Elements of the loop

• We have declared an index variable. 
• The condition must be expressed correctly. 
• We have to fetch each element. 
• The index variable must be incremented 

explicitly.
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for-each versus while

• for-each: 
– easier to write. 
– safer: it is guaranteed to stop. 
• while: 

– we don’t have to process the whole collection.  
– doesn’t even have to be used with a collection. 
– take care: could create an infinite loop.
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Searching

• A fundamental activity. 
• Applicable beyond collections. 
• Necessarily indefinite. 
• We must code for both success and failure – 

nowhere else to look. 
• Both must make the loop’s condition false, in 

order to stop the iteration. 
• A collection might be empty to start with.
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Finishing a search

• How do we finish a search? 
• Either there are no more items to check: 
index >= files.size() 

• Or the item has been found: 
found == true 
found 
! searching 



King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 14

Continuing a search

• We need to state the condition for continuing: 
• So the loop’s condition will be the opposite of 

that for finishing: 
index < files.size() && ! found 
index < files.size() && searching 

• NB: ‘or’ becomes ‘and’ when inverting 
everything.
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Searching a collection
int index = 0; 
boolean searching = true; 
while(index < files.size() && searching) { 
    String file = files.get(index); 
    if(file.equals(searchString)) { 
        // We don't need to keep looking. 
        searching = false; 
    } 
    else { 
        index++; 
    } 
} 
// Either we found it at index,  
// or we searched the whole collection.



King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 16

Searching a collection
int index = 0; 
boolean found = false; 
while(index < files.size() && !found) { 
    String file = files.get(index); 
    if(file.equals(searchString)) { 
        // We don't need to keep looking. 
        found = true; 
    } 
    else { 
        index++; 
    } 
} 
// Either we found it at index,  
// or we searched the whole collection.
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Indefinite iteration

• Does the search still work if the collection is 
empty? 

• Yes! The loop’s body won’t be entered in that 
case. 

• Important feature of while: 
– The body can be executed zero or more times.
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Side note: The String class

• The String class is defined in the 
java.lang package. 

• It has some special features that need a little 
care. 

• In particular, comparison of String objects 
can be tricky.
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Side note: The problem

• The compiler merges identical String literals 
in the program code. 

– The result is reference equality for apparently 
distinct String objects. 

• But this cannot be done for identical String 
objects that arise outside the program’s code; 

– e.g., from user input.
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Side note: String equality
if(input == "bye") {   
    ... 
} 

if(input.equals("bye")) { 
    ... 
} 

Important: Always use .equals for testing String 
equality!

tests identity

tests equality

Do not use!!
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Identity vs equality 1
Other (non-String) objects:

person1 == person2  ?

“Fred”

:Person

person1 person2

“Jill”

:Person
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Identity vs equality 2
Other (non-String) objects:

person1 == person2  ?

“Fred”

:Person

person1 person2

“Fred”

:Person
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Identity vs equality 3
Other (non-String) objects:

person1 == person2  ?

“Fred”

:Person

person1 person2

“Fred”

:Person
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Identity vs equality (Strings)

"bye"

:String

input

"bye"

:String

String input = reader.getInput(); 
if(input == "bye") { 
   ... 
}

== ?

false!

== tests identity
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Identity vs equality (Strings)

"bye"

:String

input

"bye"

:String

String input = reader.getInput(); 
if(input.equals("bye")) { 
   ... 
}

equals ?

true!

equals tests 
equality
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Moving away from String

• Our collection of String objects for music 
tracks is limited. 

• No separate identification of artist, title, etc. 
• A Track class with separate fields: 
– artist 
– title 
– filename



Grouping objects

Iterator objects
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Iterator and iterator()

• Collections have an iterator() method. 
• This returns an Iterator object. 
• Iterator<E> has methods: 
• boolean hasNext() 
• E next() 
• void remove()
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Using an Iterator object

Iterator<ElementType> it = myCollection.iterator(); 
while(it.hasNext()) { 
    call it.next() to get the next object 
    do something with that object 
} 

java.util.Iterator returns an Iterator object

public void listAllFiles() 
{ 
    Iterator<Track> it = files.iterator(); 
    while(it.hasNext()) { 
        Track tk = it.next(); 
        System.out.println(tk.getDetails()); 
    } 
} 
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Iterator mechanics
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:Element

myList:List

:Element :Element

:Iterator

myList.iterator()

:Element
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:Element :Element :Element

:Iterator

hasNext()? ✔
next()

Element e = iterator.next();

:Element

:Iterator

myList:List
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:Element :Element :Element

hasNext()? ✔
next()

:Element

:Iterator :Iterator

myList:List
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:Element :Element :Element

hasNext()? ✔
next()

:Element

:Iterator :Iterator

myList:List
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:Element :Element :Element

hasNext()? ✔
next()

:Element

:Iterator :Iterator

myList:List
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:Element :Element :Element

hasNext()? ✗

:Element

:Iterator

myList:List
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Index versus Iterator

• Ways to iterate over a collection: 
– for-each loop. 

• Use if we want to process every element. 
– while loop. 

• Use if we might want to stop part way through. 
• Use for repetition that doesn't involve a collection. 

– Iterator object. 
• Use if we might want to stop part way through. 
• Often used with collections where indexed access is not very efficient, or 

impossible. 
• Use to remove from a collection. 

• Iteration is an important programming pattern.
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Removing from a collection
Iterator<Track> it = tracks.iterator(); 
while(it.hasNext()) { 
    Track t = it.next(); 
    String artist = t.getArtist(); 
    if(artist.equals(artistToRemove)) { 
        it.remove(); 
    } 
}

Using the Iterator’s remove method.
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Removing from a collection – wrong!

int index = 0; 
while(index < tracks.size()) { 
    Track t = tracks.get(index); 
    String artist = t.getArtist(); 
    if(artist.equals(artistToRemove)) { 
        tracks.remove(index); 
    } 
    index++; 
}

Can you spot what is wrong?
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Review

• Loop statements allow a block of statements to be 
repeated. 

• The for-each loop allows iteration over a whole 
collection. 

• The while loop allows the repetition to be controlled 
by a boolean expression. 

• All collection classes provide special Iterator 
objects that provide sequential access to a whole 
collection.
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The auction project
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The auction project

• The auction project provides further 
illustration of collections and iteration. 

• Examples of using null. 
• Anonymous objects. 
• Chaining method calls.
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null

• Used with object types. 
• Used to indicate, 'no object'. 
• We can test if an object variable holds the 
null value: 
 
if(highestBid == null) … 

• Used to indicate ‘no bid yet’.
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Anonymous objects

• Objects are often created and handed on 
elsewhere immediately: 
 
Lot furtherLot = new Lot(…); 
lots.add(furtherLot); 

• We don’t really need furtherLot: 
 
lots.add(new Lot(…));



King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 45

Chaining method calls

• Methods often return objects. 
• We often immediately call a method on the 

returned object. 
Bid bid = lot.getHighestBid(); 
Person bidder = bid.getBidder(); 

• We can use the anonymous object concept and 
chain method calls: 
lot.getHighestBid().getBidder()
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Chaining method calls

• Each method in the chain is called on the 
object returned from the previous method call 
in the chain.

String name = 
    lot.getHighestBid().getBidder().getName();

Returns a Bid object from the Lot

Returns a Person object from the Bid

Returns a String object from the Person
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Review

• Collections are used widely in many different 
applications. 

• The Java library provides many different 
‘ready made’ collection classes. 

• Collections are often manipulated using 
iterative control structures. 

• The while loop is the most important control 
structure to master.
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Review

• Some collections lend themselves to index-
based access; e.g. ArrayList. 

• Iterator provides a versatile means to 
iterate over different types of collection. 

• Removal using an Iterator is less error-
prone in some circumstance.


