INGS
College
LLONDON

Programming Practice and Applications

Grouping objects - Part |l

Michael Kolling




ING'S
College

LONDON

Indefinite iteration - the while loop




Main concepts to be covered

e The difference between definite and
indefinite (unboundedq) iteration.

e Loops: the while loop

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes 3




Search tasks are indefinite

e Consider: searching for your keys.

e You cannot predict, in advance, how many
places you will have to look.

e Although, there may well be an absolute limit -
1.e., checking every possible location.

e You will stop when you find them.

e ‘Infinite loops’ are also possible.
- Through error or the nature of the task.

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes 4




The while loop

 Afor-each loop repeats the loop body for
every object in a collection.

- Sometimes we require more flexibility than this.
- The while loop supports flexibility.

e We use a boolean condition to decide whether
or not to keep iterating.

e This is a very flexible approach.
 Not tied to collections.

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes 5




While loop pseudo code

[ General form of a while loop }

L while keyword }

\ /{ boolean test }

while (loop condition) { -
loop body - Action(s) to be repeated }
} -

4 )
Pseudo-code expression of the actions of

a while loop
- /

while we wish to continue, do the things in the loop body

King's College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes §)




Looking for your keys

while (the keys are missing) {
look i1n the next place;

Or:

while (not (the keys have been found)) {
look in the next place;

ING'S
College

LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes I



Looking for your keys

boolean searching = true;
while (searching) {
1f (they are in the next place) {
searching = false;

{ Suppose we don’t find them? }

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes 8




For-each loop equivalent

/**

* LList all file names in the organizer.
*/
public void listAllFiles ()
{
int index = 0;
while(index < files.size()) {
String filename = files.get (index);
System.out.println(filename) ;
index++;

}
} \[ Increment index by 1 1
.

while the value of index is less than the size of the collection,
ngt and print the next file name, and then increment index

~

King's College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes




Elements of the loop

e We have declared an index variable.
 The condition must be expressed correctly.
e We have to fetch each element.

e The index variable must be incremented
explicitly.

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes




for-each versus while

e for-each:
- easiler to write.
- safer: it is guaranteed to stop.
e while:
- we don’t have to process the whole collection.

- doesn’t even have to be used with a collection.
- take care: could create an infinite loop.

ING'S

College
LONDON King’s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes 11




Searching

A fundamental activity.
* Applicable beyond collections.
* Necessarily indefinite.

e We must code for both success and failure -
nowhere else to look.

 Both must make the loop’s condition false, in
order to stop the iteration.

e A collection might be empty to start with.

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes




Finishing a search

e How do we finish a search?

e Fither there are no more items to check:
index >= files.size ()

e Or the item has been found:
found == true

found
! searching

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes




Continuing a search

 We need to state the condition for continuing:

e S0 the loop’s condition will be the opposite of
that for finishing:

index < files.size() && ! found
index < files.size() && searching

 NB: ‘or’ becomes ‘and’ when inverting
everything.

King's College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes



Searching a collection

int index = O;
boolean searching = true;
while(index < files.size() && searching) {
String file = files.get(index) ;
if (file.equals (searchString)) {
// We don't need to keep looking.
searching = false;
}
else {
index++;

}

// Either we found it at index,
// or we searched the whole collection.

ING'S
College

LONDON King’s College London, Programming Practice and Applications, © Michael Kélling, David J. Barnes




Searching a collection

int index = 0;
boolean found = false;
while (index < files.size() && !'found) {
String file = files.get(index) ;
if (file.equals (searchString)) {
// We don't need to keep looking.
found = true;
}
else {
index++;

}

// Either we found it at index,
// or we searched the whole collection.

ING'S
College

LONDON King’s College London, Programming Practice and Applications, © Michael Kélling, David J. Barnes




Indefinite iteration

e Does the search still work if the collection is
empty?

* Yes! The loop’s body won’t be entered in that
case.

e Important feature of while:
- The body can be executed zero or more times.

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes




Side note: The String class

e The String class is defined in the
java.lang package.

e |t has some special features that need a little
care.

e |In particular, comparison of String objects
can be tricky.

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes




Side note: The problem

 The compiler merges identical String literals
in the program code.

- The result is reference equality for apparently
distinct String objects.

e But this cannot be done for identical String
objects that arise outside the program’s code;
- e.gd., from user input.

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes




Side note: String equality

if (input == "bye") { { tests identity }
} o Do not use!!

if (input.equals("bye")) ({ [ tests equality }
}

Important: Always use .equals for testing String
equality!

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes




ldentity vs equality 1

Other (non-String) objects:

:Person :Person

personl person2

personl == person2 ?

ING'S

College
LONDON King’s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes 21




ldentity vs equality 2

Other (non-String) objects:

:Person :Person

personl person2

personl == person2 ?

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes




ldentity vs equality 3

Other (non-String) objects:

:Person :Person

personl person2

personl == person2 ?

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes




ldentity vs equality (Strings)

String input = reader.getInput();
if (input == "bye") { { == tests identity }

input false!

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes




ldentity vs equality (Strings)

String input = reader.getInput();

if (input.equals("bye")) { ! equals tests
5 equality )
}
equals ?
tnput true!

ING'S
College

LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes



Moving away from String

e Our collection of String objects for music
tracks is limited.

 No separate identification of artist, title, etc.
« A Track class with separate fields:

—artist
—title
— filename

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes




ING'S
College
LONDON

Grouping objects

Iterator objects




Iterator and iterator()

e Collections have an iterator() method.
e This returns an Iterator object.

e |terator<E> has methods:

e boolean hasNext()

e E next()

e void remove()

ING'S

College
LONDON King’s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes 28




Using an lterator object

{ returns an Iterator object }

{java.util.Iterator}
— \
Iterator<ElementType> it = myCollection.iterator();
while (1t.hasNext()) {
call i1t.next () to get the next object
do something with that object

public void listAllFiles()
{

Iterator<Track> i1t = files.iterator ()
while (it.hasNext()) {
Track tk = it.next () ;
System.out.println(tk.getDetails());

}

King's College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes




lterator mechanics

ING'S
College

LONDON King’s College London, Programming Practice and Applications, © Michael Kélling, David J. Barnes




myList.iterator ()

:Element :Element :Element :Element

:|lterator

ING'S
College

LONDON King’s College London, Programming Practice and Applications, © Michael Kélling, David J. Barnes 31




:Element :Element :Element :Element

lterat :lterator

hasNext()? ¢

next ()

Element e = iterator.next () ;

ING'S
College

LONDON King’s College London, Programming Practice and Applications, © Michael Kélling, David J. Barnes




:Element :Element :Element :Element

hasNext()? ¢

next ()

ING'S
College

LONDON King’s College London, Programming Practice and Applications, © Michael Kélling, David J. Barnes




:Element :Element :Element :Element

:lterator :|lterator

hasNext()? ¢

next ()

ING'S
College

LONDON King’s College London, Programming Practice and Applications, © Michael Kélling, David J. Barnes




:Element :Element :Element :Element

lterator :lterator

hasNext()?

next ()

ING'S
College

LONDON King’s College London, Programming Practice and Applications, © Michael Kélling, David J. Barnes




:Element :Element :Element :Element

hasNext () ? X

ING'S
College

LONDON King’s College London, Programming Practice and Applications, © Michael Kélling, David J. Barnes




Index versus lterator

e Ways to iterate over a collection:

- for-each loop.
e Use if we want to process every element.

- while loop.
o Use if we might want to stop part way through.
e Use for repetition that doesn't involve a collection.

— Iterator object.

e Use if we might want to stop part way through.

o Often used with collections where indexed access is not very efficient, or
impossible.

e Use to remove from a collection.
e |[teration is an important programming pattern.

ING'S
College

LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes



Removing from a collection

Iterator<Track> 1t = tracks.iterator ()
while (it.hasNext()) {
Track t = it.next () ;
String artist t.getArtist () ;
if (artist.equals (artistToRemove)) {
it.remove () ;

A

[ Using the Iterator’s remove method. }

ING'S
College

LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes



Removing from a collection - wrong!

int index = 0O;
while (index < tracks.size()) {
Track t = tracks.get (index);
String artist = t.getArtist();
if (artist.equals (artistToRemove)) {
tracks.remove (1ndex) ;

}

index++;

LCan you spot what is wrong? }

ING'S
College

LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes



Review

* Loop statements allow a block of statements to be
repeated.

 The for-each loop allows iteration over a whole
collection.

 The while loop allows the repetition to be controlled
by a boolean expression.

o All collection classes provide special Iterator

objects that provide sequential access to a whole
collection.

ING'S
College

LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes



The auction project

O . BlueJ: auction
New Class...
‘ > ,
Compile Auction
Bid
=>
=>
Lot
------ —>
Person
3> <
A
|

ING'S
College

LONDON King’s College London, Programming Practice and Applications, © Michael Kélling, David J. Barnes 41




The auction project

 The auction project provides further
illustration of collections and iteration.

e Examples of using null.

 Anonymous objects.
e Chaining method calls.

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes




null

e Used with object types.
e Used to indicate, 'no object.

 We can test if an object variable holds the
null value:

1f (highestBid == null)

e Used to indicate ‘no bid yet’.

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes




Anonymous objects

 Objects are often created and handed on
elsewhere immediately:

Lot furtherlot = new Lot(..);
lots.add (furtherlot) ;

« We don’t really need furtherLot:

lots.add (new Lot (..));

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes




Chaining method calls

 Methods often return objects.

 We often immediately call a method on the

returned object.
Bid bid = lot.getHighestBid() ;
Person bidder = bid.getBidder() ;

 We can use the anonymous object concept and

chain method calls:
lot.getHighestBid () .getBidder ()

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes




Chaining method calls

e Each method in the chain is called on the
object returned from the previous method call
in the chain.

String name =
lot.getHighestBid () .getBidder () .getName() ;

|

L Returns a Bid object from the Lot }

L Returns a Person object from the Bid }

[ Returns a String object from the Person }

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes




Review

e Collections are used widely in many different
applications.

 The Java library provides many different
‘ready made’ collection classes.

e Collections are often manipulated using
iterative control structures.

 The while loop is the most important control
structure to master.

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes




Review

e Some collections lend themselves to index-
based access; e.g. ArrayList.

e Tterator provides a versatile means to
iterate over different types of collection.

e Removal using an Iterator is less error-
prone in some circumstance.

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes




