
Grouping objects

Programming Practice and Applications

6.0

Michael Kölling

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 2

Main concepts to be covered

• Collections
(especially ArrayList)

• Builds on the abstraction theme from the last
chapter.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 3

The requirement to group objects

• Many applications involve collections of objects:
– Personal organisers.
– Library catalogs.
– Student-record systems.

• The number of items to be stored varies.
– Items added.
– Items deleted.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 4

An organiser for music files

• Single-track files may be added.
• There is no pre-defined limit to the number of

files/tracks.
• It will tell how many file names are stored in

the collection.
• It will list individual file names.
• Explore the music-organizer-v1 project.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 5

Class libraries

• A library of useful classes.
• We don’t have to write everything from

scratch.
• Java calls its libraries, packages.
• Grouping objects is a recurring requirement.

– The java.util package contains multiple classes
for doing this.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 6

import java.util.ArrayList;

/**
 * ...
 */
public class MusicOrganizer
{
 // Storage for an arbitrary number of file names.
 private ArrayList<String> files;

 /**
 * Perform any initialization required for the
 * organizer.
 */
 public MusicOrganizer()
 {
 files = new ArrayList<>();
 }

 ...
}

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 7

Collections

• We specify:
– the type of collection: ArrayList
– the type of objects it will contain: <String>

private ArrayList<String> files;

• We say, “ArrayList of String”.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 8

Generic classes

• Collections are known as parameterised or generic
types.

• ArrayList implements list functionality:
– add, get, size, etc.
• The type parameter says what we want a list of:
– ArrayList<Person>
– ArrayList<TicketMachine>
– etc.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 9

Creating an ArrayList object

• In versions of Java prior to version 7:
– files = new ArrayList<String>();

• Java 7 introduced ‘diamond notation’
– files = new ArrayList<>();

• The type parameter can be inferred from the
variable being assigned to.

– A convenience we will use.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 10

Object structures with collections

myMusic:
MusicOrganizer

files
: ArrayList<String>

"MorningBlues.mp3"

: String : String

"DontGo.mp3"

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 11

Adding a third file

: ArrayList<String>

: String

"MatchBoxBlues.mp3"

myMusic:
MusicOrganizer

files

"MorningBlues.mp3"

: String : String

"DontGo.mp3"

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 12

Features of the collection

• It increases its capacity as necessary.
• It keeps a private count:
– size() accessor.

• It keeps the objects in order.
• Details of how all this is done are hidden.

– Does that matter? Does not knowing how prevent us
from using it?

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 13

Generic classes

• We can use ArrayList with any class type:
ArrayList<TicketMachine>
ArrayList<ClockDisplay>
ArrayList<Track>
ArrayList<Person>

• Each will store multiple objects of the specific
type.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 14

Using the
collection

public class MusicOrganizer
{
 private ArrayList<String> files;

 ...

 public void addFile(String filename)
 {
 files.add(filename);
 }

 public int getNumberOfFiles()
 {
 return files.size();
 }

 ...
}

Adding a new file

Returning the number of files
(delegation)

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 15

Index numbering

: ArrayList<String>

: String

"MatchBoxBlues.mp3"

myMusic:
MusicOrganizer

files

"MorningBlues.mp3"

: String : String

"DontGo.mp3"

0 1 2

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 16

Retrieving from the collection

public void listFile(int index)
{
 if(index >= 0 && index < files.size()) {
 String filename = files.get(index);
 System.out.println(filename);
 }
 else {
 // This is not a valid index.
 }
}

Index validity checks

Retrieve and print the file name

Needed? (Error message?)

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 17

Removal may affect numbering

: ArrayList<String>

: String

"MatchBoxBlues.mp3"

myMusic:
MusicOrganizer

files

"MorningBlues.mp3"

: String : String

"DontGo.mp3"

0 1 2

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 18

Removal may affect numbering

: ArrayList<String>

: String

"MatchBoxBlues.mp3"

myMusic:
MusicOrganizer

files

"MorningBlues.mp3"

: String

0 1

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 19

The general utility of indices

• Using integers to index collections has a
general utility:

– ‘next’ is: index + 1
– ‘previous’ is: index – 1
– ‘last’ is: list.size() – 1
– ‘the first three’ is: the items at indices 0, 1, 2

• We could also think about accessing items in
sequence: 0, 1, 2, …

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 20

Review

• Collections allow an arbitrary number of
objects to be stored.

• Class libraries usually contain tried-and-tested
collection classes.

• Java’s class libraries are called packages.
• We have used the ArrayList class from the
java.util package.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 21

Review

• Items may be added and removed.
• Each item has an index.
• Index values may change if items are removed

(or further items added).
• The main ArrayList methods are add, get,
remove and size.

• ArrayList is a parameterized or generic
type.

Grouping objects

Collections and the for-each loop

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 23

Main concepts to be covered

• Collections
• Iteration
• Loops: the for-each loop

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 24

Iteration

• We often want to perform some actions an arbitrary
number of times.

– E.g., print all the file names in the organiser. How many are
there?

• Most programming languages include loop statements
to make this possible.

• Java has several sorts of loop statement.
– We will start with its for-each loop.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 25

Iteration fundamentals

• The process of repeating some actions over
and over.

• Loops provide us with a way to control how
many times we repeat those actions.

• With a collection, we often want to repeat the
actions: exactly once for every object in the
collection.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 26

For-each loop pseudo code

for(ElementType element : collection) {
 loop body
}

Using each element in collection in order, do the things in the loop
body with that element.

loop header
for keyword

Action(s) to be repeated

Pseudo-code expression of the operation
of a for-each loop

General form of the for-each loop

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 27

A Java example

/**
 * List all file names in the organizer.
 */
public void listAllFiles()
{
 for(String filename : files) {
 System.out.println(filename);
 }
}

Using each filename in files in order, print filename

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 28

Selective processing

• Statements can be nested, giving greater
selectivity to the actions:

public void findFiles(String searchString)
{
 for(String filename : files) {
 if(filename.contains(searchString)) {
 System.out.println(filename);
 }
 }
}

contains gives a partial match of the filename;
use equals for an exact match

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 29

Critique of for-each

• Easy to write.
• Termination happens naturally.
• The collection cannot be changed by the actions.
• There is no index provided.

– Not all collections are index-based.
• We can’t stop part way through;

– e.g., if we only want to find the first match.
• It provides ‘definite iteration’ – aka ‘bounded

iteration’.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 30

Review

• Loop statements allow a block of statements to be
repeated.

• The for-each loop allows iteration over a whole
collection.

• With a for-each loop every object in the collection is
made available exactly once to the loop’s body.

