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Abstraction and modularisation

o Abstraction is the ability to ignore details of
parts to focus attention on a higher level of a
problem.

 Modularization is the process of dividing a
whole into well-defined parts, which can be
built and examined separately, and which
interact in well-defined ways.
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A digital clock

1:03
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Modularising the clock display

11:03 One four-digit display?

Or two two-digit
displays? 111103
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Implementation - NumberDisplay

public class NumberDisplay

{
private int limit;
private int wvalue;
Constructor and
methods omitted.

}
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Implementation - ClockDisplay

public class ClockDisplay

{
private NumberDisplay hours;
private NumberDisplay minutes;
Constructor and
methods omitted.

}
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Object diagram
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Class diagram
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Modelling a two-digit display

 We call the class NumberDisplay.

* Two integer fields:
- The current value.
- The limit for the value.

e The current value is incremented until it
reaches its limit.

e |t ‘rolls over’ to zero at this point.
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Implementation - NumberDisplay

public class NumberDisplay

{
private int limit;
private int wvalue;
public NumberDisplay(int rollOverLimit)
{
limit = rollOverLimit;
value = 0;
}
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Source code: NumberDisplay

public String getDisplayValue ()
{
1f (value < 10) {
return "0" + wvalue;
}
else {
return "" + wvalue;
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increment method

public void increment ()

{
value = value + 1;
1f (value == limit) {
// Keep the value within the limit.
value = 0;
}
}
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The modulo operator

e The 'division’ operator (/), when applied to int operands,
returns the result of an integer division.

 The 'modulo’ operator (%) returns the remainder of an
integer division.
e E.g., generally:
17 / 5 gives result 3, remainder 2

e |n Java:
17 /5 ==3
17 % 5 == 2
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increment method

public void increment ()
{
value value + 1;
1f (value == limit) {
// Keep the wvalue within the
value = 0;




Alternative increment method

public void increment ()

{

/Check that you understand how :

kthe rollover works in this version.

/
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Implementation - ClockDisplay

public class ClockDisplay

{
private NumberDisplay hours;
private NumberDisplay minutes;
Constructor and
methods omitted.

}
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Classes as types

 Data can be classified under many different
types; e.g. integer, boolean, floating-point.

* |n aadition, every class is a unique data type;
e.g. String, TicketMachine,

NumberDisplay.

 Data types, therefore, can be composites and
not simply values.
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Class diagram
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Object diagram
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Objects creating objects

public class ClockDisplay

{
private NumberDisplay hours;
private NumberDisplay minutes;
private String displayString;

public ClockDisplay ()

{
hours = new NumberDisplay (24) ;

minutes = new NumberDisplay (60) ;
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Objects creating objects

in class ClockDisplay:

hours = new NumberDispla

actual parameter

in class NumberDisplay:

public NumberDisplay(iné:éiiggverL%EEEZ>

formal parameter
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ClockDisplay object diagram
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null

e null is a special value in Java
e All object variables are initialised to null.
e You can assign and test for null:

private NumberDisplay hours;
1f (hours == null) { ... }

hours = null;
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Object interaction

 Two objects interact when one object calls a
method on another.

 The interaction is usually all in one direction.

 One object can ask another object to do
something.

 One object can ask for data from the other
object.
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Object interaction

 Two NumberDisplay objects store data on
behalf of a ClockDisplay object.

- ClockDisplay calls methods in the NumberDisplay
objects.
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Method calling

public void timeTick ()

{ method calls on NumberDisplay F=

minutes.increment();*////
1f (minutes.getValue () ==
// it just rolled
hours.increment () ;

}
updateDisplay() ;

} \

internal method call
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External method calls
e General form:

object . methodName ( params )

 Examples:

hours.increment ()

minutes.getValue ()

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes




Internal method calls

 No variable name is required:
updateDisplay () ;

e |nternal methods often have priwvate visibility.

- Prevents them from being called from outside
their defining class.

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes




Internal method

/**

* Update the internal string that
* represents the display.
*/
private void updateDisplay ()
{
displayString =
hours.getDisplayValue() + ":" +
minutes.getDisplayValue() ;
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Method calls

e NB: A method call on another object
of the same type would also be an
external call.

e ‘Internal’ means ‘this object’.

e ‘External’ means ‘any other object’,
regardless of its type.
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The debugger

e Useful for gaining insights into program
behaviour ...

e ... whether or not there is a program error.
e Set breakpoints.

 Examine variables.

e Step through code.
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The debugger

06 MailClient

Compile Undo |Cut| |Copy |Paste| Find...| Close [Source Code t]J

/**

* Print the next mail item (if any) for this user to the text Threads

:/ter'minal. -
public void printNextMailItem()

{

=Y Mailltem item = server.getNextMailItem(user);
if(item == null) { ] -

System.out.println("No new mail."); | (Call Sequence | Static variables
} ManICIlent.prthextMallltem

else {
item.print(); | .
} P J; Instance variables
- MailServer server = <object reference>
} | _ String user = "feena”

J** 1
* Send the given message to the given recipient via
* the attached mail server.

* @param to The intended recipient.
* @param message The text of the message to be sent.
*/

public void sendMailIltem(String to, String message)

{ -

Mailltem item = new Mailltem(user, to, message); . »I
ser'ver'.post(item); Halt Step Step Into

} T

Thread "main" stopped at breakpoint. ’ ‘m
)

Local variables

B | | X

Continue

Terminate

mailServl: sophie: feena:
MailServer MailClient MailClient

feena : MailClient
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Concepts covered this week

e abstraction e object references
 modularisation e object types

» classes define types e primitive types

e class diagram * object creation

e object diagram * internal/external

method calls
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