ING'S
College
LLONDON

Programming Practice and Applications

Object interaction

Michael Kolling

Abstraction and modularisation

o Abstraction is the ability to ignore details of
parts to focus attention on a higher level of a
problem.

 Modularization is the process of dividing a
whole into well-defined parts, which can be
built and examined separately, and which
interact in well-defined ways.

ING'S

College
LONDON King’s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes 2

A digital clock

1:03

ING'S
College

LONDON King’s College London, Programming Practice and Applications, © Michael Kélling, David J. Barnes 3

Modularising the clock display

11:03 One four-digit display?

Or two two-digit
displays? 111103

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes 4

Implementation - NumberDisplay

public class NumberDisplay

{
private int limit;
private int wvalue;
Constructor and
methods omitted.

}

ING'S
College

LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes 5

Implementation - ClockDisplay

public class ClockDisplay

{
private NumberDisplay hours;
private NumberDisplay minutes;
Constructor and
methods omitted.

}

ING'S
College

LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes 6

Object diagram

ING'S
College

LONDON King’s College London, Programming Practice and Applications, © Michael Kdélling, David J. Barnes 7

Class diagram

ING'S
College

LONDON King’s College London, Programming Practice and Applications, © Michael Kdélling, David J. Barnes 8

Modelling a two-digit display

 We call the class NumberDisplay.

* Two integer fields:
- The current value.
- The limit for the value.

e The current value is incremented until it
reaches its limit.

e |t ‘rolls over’ to zero at this point.

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes 9

Implementation - NumberDisplay

public class NumberDisplay

{
private int limit;
private int wvalue;
public NumberDisplay(int rollOverLimit)
{
limit = rollOverLimit;
value = 0;
}
O I

LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes

Source code: NumberDisplay

public String getDisplayValue ()
{
1f (value < 10) {
return "0" + wvalue;
}
else {
return "" + wvalue;

ING'S
College

LONDON King’s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes 11

increment method

public void increment ()

{
value = value + 1;
1f (value == limit) {
// Keep the value within the limit.
value = 0;
}
}

ING'S
College

LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes

The modulo operator

e The 'division’ operator (/), when applied to int operands,
returns the result of an integer division.

 The 'modulo’ operator (%) returns the remainder of an
integer division.
e E.g., generally:
17 / 5 gives result 3, remainder 2

e |n Java:
17 /5 ==3
17 % 5 == 2

ING'S

College
LONDON

King's College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes

increment method

public void increment ()
{
value value + 1;
1f (value == limit) {
// Keep the wvalue within the
value = 0;

Alternative increment method

public void increment ()

{

/Check that you understand how :

kthe rollover works in this version.

/

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes

Implementation - ClockDisplay

public class ClockDisplay

{
private NumberDisplay hours;
private NumberDisplay minutes;
Constructor and
methods omitted.

}

ING'S
College

LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes

Classes as types

 Data can be classified under many different
types; e.g. integer, boolean, floating-point.

* |n aadition, every class is a unique data type;
e.g. String, TicketMachine,

NumberDisplay.

 Data types, therefore, can be composites and
not simply values.

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes

Class diagram

ING'S
College

LONDON King’s College London, Programming Practice and Applications, © Michael Kdélling, David J. Barnes

Object diagram

ING'S
College

LONDON King’s College London, Programming Practice and Applications, © Michael Kdélling, David J. Barnes

Objects creating objects

public class ClockDisplay

{
private NumberDisplay hours;
private NumberDisplay minutes;
private String displayString;

public ClockDisplay ()

{
hours = new NumberDisplay (24) ;

minutes = new NumberDisplay (60) ;

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes

Objects creating objects

in class ClockDisplay:

hours = new NumberDispla

actual parameter

in class NumberDisplay:

public NumberDisplay(iné:éiiggverL%EEEZ>

formal parameter

ING'S

College
LONDON King’s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes 21

ClockDisplay object diagram

ING'S
College

LONDON King’s College London, Programming Practice and Applications, © Michael Kdélling, David J. Barnes

null

e null is a special value in Java
e All object variables are initialised to null.
e You can assign and test for null:

private NumberDisplay hours;
1f (hours == null) { ... }

hours = null;

ING'S

College
LONDON King’s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes 23

Object interaction

 Two objects interact when one object calls a
method on another.

 The interaction is usually all in one direction.

 One object can ask another object to do
something.

 One object can ask for data from the other
object.

King's College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes

Object interaction

 Two NumberDisplay objects store data on
behalf of a ClockDisplay object.

- ClockDisplay calls methods in the NumberDisplay
objects.

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes

Method calling

public void timeTick ()

{ method calls on NumberDisplay F=

minutes.increment();*////
1f (minutes.getValue () ==
// it just rolled
hours.increment () ;

}
updateDisplay() ;

} \

internal method call

ING'S

College
LONDON King’s College London, Programming Practice and Applications, © Michael Kélling, David J. Barnes 20

External method calls
e General form:

object . methodName (params)

 Examples:

hours.increment ()

minutes.getValue ()

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes

Internal method calls

 No variable name is required:
updateDisplay () ;

e |nternal methods often have priwvate visibility.

- Prevents them from being called from outside
their defining class.

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes

Internal method

/**

* Update the internal string that
* represents the display.
*/
private void updateDisplay ()
{
displayString =
hours.getDisplayValue() + ":" +
minutes.getDisplayValue() ;

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes

Method calls

e NB: A method call on another object
of the same type would also be an
external call.

e ‘Internal’ means ‘this object’.

e ‘External’ means ‘any other object’,
regardless of its type.

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes

The debugger

e Useful for gaining insights into program
behaviour ...

e ... whether or not there is a program error.
e Set breakpoints.

 Examine variables.

e Step through code.

ING'S

College
LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes 31

The debugger

06 MailClient

Compile Undo |Cut| |Copy |Paste| Find...| Close [Source Code t]J

/**

* Print the next mail item (if any) for this user to the text Threads

:/ter'minal. -
public void printNextMailItem()

{

=Y Mailltem item = server.getNextMailItem(user);
if(item == null) {] -

System.out.println("No new mail."); | (Call Sequence | Static variables
} ManICIlent.prthextMallltem

else {
item.print(); | .
} P J; Instance variables
- MailServer server = <object reference>
} | _ String user = "feena”

J** 1
* Send the given message to the given recipient via
* the attached mail server.

* @param to The intended recipient.
* @param message The text of the message to be sent.
*/

public void sendMailIltem(String to, String message)

{ -

Mailltem item = new Mailltem(user, to, message); . »I
ser'ver'.post(item); Halt Step Step Into

} T

Thread "main" stopped at breakpoint. ’ ‘m
)

Local variables

B | | X

Continue

Terminate

mailServl: sophie: feena:
MailServer MailClient MailClient

feena : MailClient

ING'S
College

LONDON King’s College London, Programming Practice and Applications, © Michael Kélling, David J. Barnes

Concepts covered this week

e abstraction e object references
 modularisation e object types

» classes define types e primitive types

e class diagram * object creation

e object diagram * internal/external

method calls

ING'S
College

LONDON King’'s College London, Programming Practice and Applications, © Michael Kolling, David J. Barnes

