
Object interaction

Programming Practice and Applications

6.0

Michael Kölling

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 2

Abstraction and modularisation

• Abstraction is the ability to ignore details of
parts to focus attention on a higher level of a
problem.

• Modularization is the process of dividing a
whole into well-defined parts, which can be
built and examined separately, and which
interact in well-defined ways.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 3

A digital clock

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 4

Modularising the clock display

One four-digit display?

Or two two-digit
displays?

11:03

0311

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 5

Implementation - NumberDisplay

public class NumberDisplay
{
 private int limit;
 private int value;

 Constructor and
 methods omitted.
}

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 6

Implementation - ClockDisplay

public class ClockDisplay
{
 private NumberDisplay hours;
 private NumberDisplay minutes;

 Constructor and
 methods omitted.
}

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 7

Object diagram

myDisplay:
ClockDisplay

hours

minutes

: NumberDisplay

: NumberDisplay

11

03

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 8

Class diagram

ClockDisplay

NumberDisplay

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 9

Modelling a two-digit display

• We call the class NumberDisplay.
• Two integer fields:

– The current value.
– The limit for the value.

• The current value is incremented until it
reaches its limit.

• It ‘rolls over’ to zero at this point.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 10

Implementation - NumberDisplay

public class NumberDisplay
{
 private int limit;
 private int value;

 public NumberDisplay(int rollOverLimit)
 {
 limit = rollOverLimit;
 value = 0;
 }
 ...
}

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 11

Source code: NumberDisplay

public String getDisplayValue()
{
 if(value < 10) {
 return "0" + value;
 }
 else {
 return "" + value;
 }
}

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 12

increment method

public void increment()
{
 value = value + 1;
 if(value == limit) {
 // Keep the value within the limit.
 value = 0;
 }
}

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 13

The modulo operator

• The 'division' operator (/), when applied to int operands,
returns the result of an integer division.

• The 'modulo' operator (%) returns the remainder of an
integer division.

• E.g., generally:
 17 / 5 gives result 3, remainder 2

• In Java:
 17 / 5 == 3
 17 % 5 == 2

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 14

increment method

public void increment()
{
 value = value + 1;
 if(value == limit) {
 // Keep the value within the limit.
 value = 0;
 }
}

 H
ow can this be rewritten?

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 15

Alternative increment method

public void increment()
{
 value = (value + 1) % limit;
}

Check that you understand how
the rollover works in this version.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 16

Implementation - ClockDisplay

public class ClockDisplay
{
 private NumberDisplay hours;
 private NumberDisplay minutes;

 Constructor and
 methods omitted.
}

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 17

Classes as types

• Data can be classified under many different
types; e.g. integer, boolean, floating-point.

• In addition, every class is a unique data type;
e.g. String, TicketMachine,
NumberDisplay.

• Data types, therefore, can be composites and
not simply values.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 18

Class diagram

ClockDisplay

NumberDisplay

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 19

Object diagram

myDisplay:
ClockDisplay

hours

minutes

: NumberDisplay

: NumberDisplay

11

03

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 20

Objects creating objects

public class ClockDisplay
{
 private NumberDisplay hours;
 private NumberDisplay minutes;
 private String displayString;

 public ClockDisplay()
 {
 hours = new NumberDisplay(24);
 minutes = new NumberDisplay(60);
 …
 }
}

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 21

Objects creating objects

public NumberDisplay(int rollOverLimit);

in class NumberDisplay:

formal parameter

hours = new NumberDisplay(24);
in class ClockDisplay:

actual parameter

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 22

ClockDisplay object diagram

myDisplay:
ClockDisplay

hours

minutes

: NumberDisplay

value

limit

23

60

24

15

limit

value

: NumberDisplay

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 23

null

• null is a special value in Java
• All object variables are initialised to null.
• You can assign and test for null:

private NumberDisplay hours;

if(hours == null) { ... }

hours = null;

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 24

Object interaction

• Two objects interact when one object calls a
method on another.

• The interaction is usually all in one direction.
• One object can ask another object to do

something.
• One object can ask for data from the other

object.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 25

Object interaction

• Two NumberDisplay objects store data on
behalf of a ClockDisplay object.

– ClockDisplay calls methods in the NumberDisplay
objects.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 26

Method calling

public void timeTick()
{
 minutes.increment();
 if(minutes.getValue() == 0) {
 // it just rolled over!
 hours.increment();
 }
 updateDisplay();
}

method calls on NumberDisplay

internal method call

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 27

External method calls

• General form:

 object . methodName (params)

• Examples:

 hours.increment()

 minutes.getValue()

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 28

Internal method calls

• No variable name is required:

 updateDisplay();

• Internal methods often have private visibility.
– Prevents them from being called from outside

their defining class.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 29

Internal method

/**
 * Update the internal string that
 * represents the display.
 */
private void updateDisplay()
{
 displayString =
 hours.getDisplayValue() + ":" +
 minutes.getDisplayValue();
}

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 30

Method calls

• NB: A method call on another object
of the same type would also be an
external call.

• ‘Internal’ means ‘this object’.
• ‘External’ means ‘any other object’,

regardless of its type.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 31

The debugger

• Useful for gaining insights into program
behaviour …

• … whether or not there is a program error.
• Set breakpoints.
• Examine variables.
• Step through code.

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 32

The debugger

King’s College London, Programming Practice and Applications, © Michael Kölling, David J. Barnes 33

Concepts covered this week

• abstraction
• modularisation
• classes define types
• class diagram
• object diagram

• object references
• object types
• primitive types
• object creation
• internal/external

method calls

