
Data Structures Programming Assignment 1: OOP Review

Last month, scientists at NASA discovered life on Mars, Neptune, and Saturn! Your job is to create a program
that can convert currencies between the planets to aid in interplanetary transactions.

Implementation details
You will create 3 currency classes: Mars.java, Neptune.java, and Saturn.java. Each of these classes must
derive from an abstract parent class Currency.java and implement the interface Exchangeable.java.

Currency.java
The currency class must contain the following data members:

● name of the currency (String currencyName)
○ MarsMoney
○ NeptuneNuggets
○ SaturnSilver

● total funds (double totalFunds)

Additionally, because the planets only trust Earth, dollars will serve as the intermediary currency.
The Currency class will contain the following 2 abstract methods:

public abstract double toEarthDollars(double amount);

public abstract double fromEarthDollars(double EarthDollars);

Use these methods to exchange money between planets.

Exchangeable.java
Exchange rates should be implemented as constants in the Exchangeable interface.
1.00 EarthDollar (ED) = 1.30 MarsMoney (MM) = 0.87 SaturnSilver (SS) = 2.00 Neptune Nuggets (NN)

Note that we may change the values of the exchange rates when testing your code. We will only edit the
Exchangeable interface, so rates should be encapsulated in and accessed from Exchangeable.java.

Exchangeable must also include a method to exchange between the current currency and a target currency.
When a planet calls exchange() with another planet and a specified amount, the methods
toEarthDollars() and fromEarthDollars() should be used to convert the source currency into the
target currency. The amount should be subtracted from the calling planet and added to the target planet. If a
planet tries to exchange more funds than it currently has, an error should be printed and no transfer should
occur.
The exchange method should have the following signature:

public void exchange(Exchangeable other, double amount);

The remainder of the implementation details are up to you. As always, use best practices, including the
principle of least privilege, inheritance, and encapsulation as much as possible.

Denisa Vataksi

Denisa Vataksi

Denisa Vataksi
public void exchange(Currency other, double amount);

Submission details
Your code should also include a main method (you can put it in Currency.java or create a separate class) to
test your functionality.

Please zip all source files and submit on NYU Classes.

Sample run
Input

Currency mars = new Mars(100.00);

Currency neptune = new Neptune(100.00);

Currency saturn = new Saturn(100.00);

System.out.println("<-- Exchanges -->");

mars.exchange(saturn, 25.0);

neptune.exchange(saturn, 10.0);

saturn.exchange(mars, 122.0);

saturn.exchange(mars, 121.0);

Output

<-- Exchanges -->

Converting from MarsMoney to SaturnSilver and initiating transfer...

$25.00 MarsMoney = $19.23 EarthDollars = 16.73 SaturnSilver

Mars has a total of $75.00 MarsMoney

Saturn has a total of $116.73 SaturnSilver

Converting from NeptuneNuggets to SaturnSilver and initiating

transfer...

$10.00 NeptuneNuggets = $5.00 EarthDollars = 4.35 SaturnSilver

Neptune has a total of $90.00 NeptuneNuggets

Saturn has a total of $121.08 SaturnSilver

Uh oh - Saturn only has an available balance of $121.08, which is

less than $122.00!

Converting from SaturnSilver to MarsMoney and initiating transfer...

$121.00 SaturnSilver = $139.08 EarthDollars = 180.80 MarsMoney

Saturn has a total of $0.08 SaturnSilver

Mars has a total of $255.80 MarsMoney

