
Assignment 5: Battleship

 Introduction to Computer Science

 Due by on 11/30 by Midnight

1 Code of Conduct
All assignments are graded, meaning we expect you to adhere to the academic integrity standards of
NYU. To any confusion regarding this, we will briefly state what is and isn’t allowed when working on
an assignment.

Any document and program code that you submit must be fully written by yourself. You can, of course,
discuss work with fellow students, as long as these discussions are restricted to general solution
techniques. Put differently, these discussions should not be about concrete code you are writing, nor
about specific results you wish to submit. When discussing an assignment with others, this should
never lead to you possessing the complete or partial solution of others, regardless of whether the
solution is in paper or digital form, and independent of who made the solution. That means, you are
also not allowed to possess solutions by someone from a different year or course or someone from
another university, or code from the Internet, etc. This also implies that there is never a reason to share
your code with fellow students, and that there is no valid reason to publish your code online in any
form.

Every student is responsible for the work they submit. If there is any doubt during the grading about
whether a student created the assignment themselves (e.g. if the solution matches that of others), we
reserve the option to let the student explain why this is the case. In case doubts remain, or we decide
to directly escalate the issue, the suspected violations will be reported to the academic administration
according to the policies of NYU (see https://cs.nyu.edu/home/undergrad/policy.html).

2 Introduction
Battleship (also Battleships or Sea Battle) is a guessing game for two players. It is known
worldwide as a pencil and paper game which dates from World War I was published by
various companies as a pad-and-pencil game in the 1930s, and was released as a plastic
board game by Milton Bradley in 1967.

The goal of this assignment is to implement a simplified version of the
Battleship game in Java. This will give you practice in working with arrays
and multidimensional arrays, loops, methods, etc. Additionally, it is a good
exercise in decomposing a larger problem into smaller and more
manageable parts using methods.

The Battleship game is played on a two-dimensional board. The board is
typically square (usually 10x10 cells) and the individual cells in the grid are
identified by letters and numbers. In this simplified version of Battleship, only
one player plays against the computer. At the start of the game, the
computer secretly places one (hidden) ship with the size of 4 cells/ blocks on
the board in a random location and with a random orientation, either
horizontally or vertically. As the location of the ship is concealed from the
player, the goal of the player is to "destroy" the ship with the least number of
guesses. Hereby, the player takes turns by entering a coordinate of the
target cell. If it is a hit, the cell is marked by an 'X', otherwise by a '#' for a
miss. When all cells of the ship are guessed by the player, the ship is sunk
and the game is won.

Figure 1 shows an example of the Battleship game on a 10x10 grid.

Figure 1: Example output after the start of the game and after multiple turns

with 3 hits at D8, E8, F8

3 Implementation
The implementation of this game mainly consists of two phases:

Initialization:
At the start of the game, an (empty) board is created, where columns are identified
by a letter and rows by a number (see Figure 1). The computer then randomly
places a ship on the board, where the location of the ship is described by a random

row, column, and orientation. As the ship occupies a number of consecutive cells
on the board, the random row and column is used as the first cell of the ship and
then extends either vertically (down) or horizontally (right) based on the length of
the ship. In order to randomly select a row, column, and orientation of the ship, use
the Math.random() methods. When drawing random numbers for the first cell of the
ship, make sure that a) the row and column is within the board dimensions and b)
the ship can actually be placed completely within the board dimensions, i.e. no cell
of the ship exceeds the board dimensions.
As the location of the ship is concealed from the user, you have to find a
solution to store the cells that are occupied by the ship without revealing
them to the player, for example use another board that holds the locations of
the ship which is not shown to the user and only used to verify a hit or miss.
After creating the board, the board should be printed on the screen so that
the user gets an idea on how the board looks like.

Please note the board dimensions and the size of the ship are declared as
constant (global) variables and that the program dynamically creates a board
based on these values. In other words, do not "hardcode" the board
dimensions, size of the ship, etc. This allows you to easily change these
values without modifying multiple lines of your code. The code snippet below
shows an example of the first lines of your code:

 final int SHIP_SIZE = 4; // constant for the size of
the ship final int DIMENSION = 10; // constant for the
size of the board (square) // create the board

// randomly place the ship. Use Math.random() to return an int

random numbers // display the board

Game phase:
After creating the board, the player is asked to make a guess by entering a
coordinate (location) within the board. The coordinate consists of the column
(a letter) followed by the row (a digit). For example, valid coordinates are B4,
C1, A6, etc. Notice that the column letter is case-sensitive that the input
clearly describes the format of the expected input. In case the player enters
an invalid input or an invalid coordinate, the program informs the player
about this and asks for a new coordinate. Examples for invalid input are AB,
A 6, 1A, 32, A;5, etc. or coordinates out of the board dimensions.
After a valid user input, the program places the guess on the board, where a
hit is denoted as an 'X' and a miss as a '#'. The program must also maintain
a score indicating the number of guesses (1 point for each guess whether it’s

a hit or a miss). After each turn, the program must check if the game is won,
i.e. the entire ship is sunk (all the four pieces of the ship were found). If so,
the program must inform the user that the game is over, and display the
score (Number of guesses). Otherwise, the board should be printed
reflecting the updated cells and ask for another input. Before printing the
updated board. So, you can assume that the player will keep playing until all
of the four pieces of the ship are discovered (which could take a minimum 4
or maximum of 100 guesses). Obviously, 4 guess is a much better score
than a 100.

3 Grading
Description Score (/20)

Initialization of the board 2

Printing of the board and board labels, as depicted in Figure 1 2

Randomly placing the ship 3

Checking for invalid user input (letter followed by number) 2

Checking for invalid input (repetitive guesses of same cell, out of board, etc) 2

Updating the board cells based on user input 2

Detecting end of the game: When the ship is sank (when user find all of the 4
pieces of the ship). 3

Displaying a correct score after a win (when all the 4 pieces of the ship are
found). 2

Terminate the game after a win. 1

Usage of comments and readability of code (style, variable naming, using
methods, etc.) 1

4 Submission
Please note: Your submission must have set the board dimensions to 10x10
and the ship length to 4 cells.
The deadline of this assignment is due by 11/30 by midnight via Brightspace. You can

directly submit your .java file on Brightspace. Submissions via are not
accepted. Late submissions will be penalized by 10% per class and it will not be accepted
after 3 classes past the due date. Note that your solution must work using Java and without
any syntax errors. In case your code does not work using Java, your submission will not be
graded.
Extra Credit for excellent innovative solutions and added technical feature!

